DISEASE MONITORING IN WILD PLANTS AND ANIMALS: AN ESSENTIAL EDUCATIONAL TOOL IN ECUADORIAN ENVIRONMENTAL MANAGEMENT

Authors

Keywords:

education; monitoring; diseases; ecosystem; Amazon.

Abstract

Monitoring diseases in wild plants and animals is crucial to measuring the success of environmental policies and management in Ecuador, and it is also presented as an invaluable educational tool. Its effective implementation not only prevents the spread of diseases and protects biodiversity, but also serves as an academic basis to raise awareness and train future generations of scientists and citizens committed to sustainability. The study aims to synthesize the causes of the appearance of diseases in wild plants and animals and evaluate the impact of climate change on ecosystems, to develop educational and research programs in the Amazon region of Ecuador. As part of the methodology, reliable and relevant sources of information were selected from specialized databases, which allowed not only to identify relevant studies, but also to pose specific educational challenges around disease monitoring. Ecuador, being a megadiverse country, offers a perfect setting for students and academics to actively participate in epidemiological surveillance, sample collection, and laboratory testing, thus enriching their academic and practical training. It is concluded that, for successful monitoring, it is necessary not only to develop specific programs that systematically collect data, but also to design educational strategies that motivate and train participants, strengthening their understanding of the importance of the health of ecosystems and their conservation.

References

Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535–544. https://doi.org/10.1016/j.tree.2004.07.021

Bebber, D. P., Holmes, T., & Gurr, S. J. (2014). The global spread of crop pests and pathogens. Global Ecology and Biogeography, 23(12), 1398–1407. https://doi.org/10.1111/geb.12214

Becker, D. J., & Han, B. A. (2021). The macroecology and evolution of avian competence for Borrelia burgdorferi. Global Ecology and Biogeography, 30(4), 710–724. https://doi.org/10.1111/geb.13256

Bonnamour, A., Gippet, J. M. W., & Bertelsmeier, C. (2021). Insect and plant invasions follow two waves of globalisation. Ecology Letters. https://doi.org/10.1111/ele.13863

Brasier, C. M., & Buck, K. W. (2001). Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biological Invasions, 3(3), 223–233. https://doi.org/10.1023/A:1015208714078

Brum, M., & Lisboa, S. (2023). Mapping of no-drill areas in Ecuador’s Amazon can be scaled for entire rainforest: Study. Mongabay. https://news.mongabay.com/2023/02/mapping-of-no-drill-areas-in-ecuadors-amazon-can-be-scaled-for-entire-rainforest-study/ (Online on 13 February 2023).

Burdon, J. J., & Laine, A.-L. (2019). Evolutionary dynamics of plant–pathogen interactions. Cambridge University Press.

Burdon, J. J., & Thrall, P. H. (2009). Coevolution of plants and their pathogens in natural habitats. Science, 324(5930), 755–756. https://doi.org/10.1126/science.1171663

Burgess, T. I., & Wingfield, M. J. (2002). Impact of fungi in natural forest ecosystems; a focus on Eucalyptus. In K. Sivasithamparam, K. W. Dixon, & R. L. Barrett (Eds.), Microorganisms in plant conservation and biodiversity (pp. 285–306). Kluwer Academic Publishers.

Burgess, T. I., & Wingfield, M. J. (2017). Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience, 67(1), 14–25. https://doi.org/10.1093/biosci/biw132

Canessa, S., Bozzuto, C., Grant, E. H. C., Cruickshank, S. S., Fisher, M. C., Koella, J. C., et al. (2018). Decision-making for mitigating wildlife diseases: from theory to practice for an emerging fungal pathogen of amphibians. Journal of Applied Ecology, 55(4), 1987–1996. https://doi.org/10.1111/1365-2664.13089

Chaloner, T. M., Gurr, S. J., & Bebber, D. P. (2020). Geometry and evolution of the ecological niche in plant-associated microbes. Nature Communications, 11, Article 2955. https://doi.org/10.1038/s41467-020-16719-w

De Castro, F., & Bolker, B. (2005). Mechanisms of disease-induced extinction. Ecology Letters, 8(1), 117–126. https://doi.org/10.1111/j.1461-0248.2004.00693.x

De la Torre, A., Paredes-Jarrín, J., López-Villavicencio, M., & Benítez-Malvido, J. (2021). Changes in seedling survival and disease incidence in an Andean Forest under climate change scenarios. Biotropica, 53(2), 382–391. https://doi.org/10.1111/btp.12869

Desprez-Loustau, M.-L., Aguayo, J., Dutech, C., Hayden, K. J., Husson, C., Jakushkin, B., et al. (2016). An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Annals of Forest Science, 73(1), 45–67. https://doi.org/10.1007/s13595-015-0487-7

Desprez-Loustau, M.-L., Marcais, B., Nageleisen, L. M., Piou, D., & Vannini, A. (2006). Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 63(6), 597–612. https://doi.org/10.1051/forest:2006040

Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., et al. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471), Article eaax3100. https://doi.org/10.1126/science.aax3100

GADP Orellana. (2015). Plan de desarrollo y ordenamiento territorial de la Provincia de Orellana 2015-2025. Recuperado el 11 de julio de 2017, de http://www.gporellana.gob.ec/plande-desarrollo/

Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology, 44(1), 489–509. https://doi.org/10.1146/annurev.phyto.44.070505.143420

Ghelardini, L., Pepori, A. L., Luchi, N., Capretti, P., & Santini, A. (2016). Drivers of emerging fungal diseases of forest trees. Forest Ecology and Management, 381, 235–246. https://doi.org/10.1016/j.foreco.2016.09.032

Halliday, F. W. (2021). Calanda19 (Version swh:1:rev:86ce01777c396840455fd67a3ff5cd8420e8df21) [Computer software]. Software Heritage. https://archive.softwareheritage.org/swh:1:rev:86ce01777c396840455fd67a3ff5cd8420e8df21

Halliday, F. W., Heckman, R. W., Wilfahrt, P. A., & Mitchell, C. E. (2019). Past is prologue: Host community assembly and the risk of infectious disease over time. Ecology Letters, 22(2), 138-148. https://doi.org/10.1111/ele.13176

Halliday, F. W., Heckman, R. W., Wilfahrt, P. A., & Mitchell, C. E. (2020a). Eutrophication, biodiversity loss, and species invasions modify the relationship between host and parasite richness during host community assembly. Global Change Biology, 26(9), 4854-4867. https://doi.org/10.1111/gcb.15165

Halliday, F. W., Rohr, J. R., & Laine, A. L. (2020b). Biodiversity loss underlies the dilution effect of biodiversity. Ecology Letters, 23(11), 1611-1622. https://doi.org/10.1111/ele.13590

Halliday, F. W., & Rohr, J. R. (2019). Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps. Nature Communications, 10(1), 5032. https://doi.org/10.1038/s41467-019-13049-w

Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162. https://doi.org/10.1126/science.1063699

Hefley, T., Hooten, M., Hanks, E., Russell, R. E., & Walsh, D. P. (2017). A dynamic spatio-temporal model for spatial data. Spatial Statistics, 20, 206-220. https://doi.org/10.1016/j.spasta.2017.02.005

Hennon, P. E., Frankel, S. J., Woods, A. J., Worrall, J. J., Norlander, D., Zambino, P. J., et al. (2020). A framework to evaluate climate effects on forest tree diseases. Forest Pathology, 50(2), e12649. https://doi.org/10.1111/efp.12649

Hepting, G. H. (1963). Climate and forest diseases. Annual Review of Phytopathology, 1(1), 31-50.

Hillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., Eriksson, B. K., Filstrup, C. T., Harpole, W. S., Hodapp, D., Larsen, S., Lewandowska, A. M., Seabloom, E. W., Van de Waal, D. B., & Ryabov, A. B. (2018). Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 55(1), 169-184. https://doi.org/10.1111/1365-2664.12959

Holdenrieder, O., Pautasso, M., Weiberg, P. J., & Lonsdale, D. (2004). Tree diseases and landscape processes: The challenge of landscape pathology. Trends in Ecology & Evolution, 19(8), 446-452. https://doi.org/10.1016/j.tree.2004.06.003

Jeger, M. J. (2022). The impact of climate change on disease in wild plant populations and communities. Plant Pathology, 71(1), 111-130. https://doi.org/10.1111/ppa.13387

Johnson, P. T. J., Ostfeld, R. S., & Keesing, F. (2015). Frontiers in research on biodiversity and disease. Ecology Letters, 18(10), 1119-1133. https://doi.org/10.1111/ele.12479

Johnson, P. T. J., Preston, D. L., Hoverman, J. T., & Richgels, K. L. D. (2013). Biodiversity decreases disease through predictable changes in host community competence. Nature, 494(7437), 230-233. https://doi.org/10.1038/nature11883

Joseph, M. B., Mihaljevic, J. R., Orlofske, S. A., & Paull, S. H. (2013). Does life history mediate changing disease risk when communities disassemble? Ecology Letters, 16(11), 1405-1412. https://doi.org/10.1111/ele.12180

Kirk, D., Shea, D., & Start, D. (2019). Host traits and competitive ability jointly structure disease dynamics and community assembly. Journal of Animal Ecology, 88(9), 1379-1391. https://doi.org/10.1111/1365-2656.13028

Martin, L. B., Addison, B. A., & Bean, A. G. D. (2019). Extreme competence: Keystone hosts of infections. Trends in Ecology & Evolution, 34(4), 303-314. https://doi.org/10.1016/j.tree.2018.12.009

Mihaljevic, J. R., Joseph, M. B., Orlofske, S. A., Paull, S. H., & Killilea, M. (2014). The scaling of host density with richness affects the direction, shape, and detectability of diversity-disease relationships. PLOS ONE, 9(5), e97812. https://doi.org/10.1371/journal.pone.0097812

Paap, T., Wingfield, M. J., Burgess, T. I., Wilson, J. R. U., & Richardson, D. M., & Santini, A. (2022). Invasion frameworks: A forest pathogen perspective. Current Forestry Reports, 8(1), 74-89. https://doi.org/10.1007/s40725-021-00144-z

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: IPCC.

Parker, I. M., & Gilbert, G. S. (2018). Density-dependent disease, life-history trade-offs, and the effect of leaf pathogens on a suite of co-occurring close relatives. Journal of Ecology, 106(5), 1829-1838. https://doi.org/10.1111/1365-2745.13024

Pautasso, M., & Jeger, M. J. (2014). Impacts of climate change on plant diseases: New scenarios for the future. In E. R. Choffnes & A. Mack (Eds.), The influence of global environmental change on infectious disease dynamics: Workshop summary (pp. 359-374). Washington, D.C.: National Academies Press.

Pautasso, M., Aas, G., Queloz, V., & Holdenrieder, O. (2013). European ash (Fraxinus excelsior) dieback – A conservation biology challenge. Biological Conservation, 158, 37-49. https://doi.org/10.1016/j.biocon.2012.08.026

Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M. J., et al. (2010). Plant health and global change – Some implications for landscape management. Biological Reviews, 85(4), 729-755. https://doi.org/10.1111/j.1469-185X.2010.00123.x

Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P., & Foley, J. E. (2008). Causal inference in disease ecology: Investigating ecological drivers of disease emergence. Frontiers in Ecology and the Environment, 6(8), 420-429. https://doi.org/10.1890/070086

Ramsfield, T. D., Bentz, B. J., Faccoli, M., Jactel, H., & Brockerhoff, E. G. (2016). Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry, 89(3), 245-252. https://doi.org/10.1093/forestry/cpw018

Rigling, D., & Prospero, S. (2018). Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Molecular Plant Pathology, 19(1), 7-20. https://doi.org/10.1111/mpp.12542

Rizzo, D. M., & Garbelotto, M. (2003). Sudden oak death: Endangering California and Oregon forest ecosystems. Frontiers in Ecology and the Environment, 1(5), 197-204. https://doi.org/10.1890/1540-9295(2003)001[0197:SODECA]2.0.CO;2

Rohr, J. R., Dobson, A. P., Johnson, P. T. J., Kilpatrick, A. M., Paull, S. H., Raffel, T. R., Ruiz-Moreno, D., & Thomas, M. B. (2011). Frontiers in climate change-disease research. Trends in Ecology & Evolution, 26(6), 270-277. https://doi.org/10.1016/j.tree.2011.03.002

Russell, R. E., DiRenzo, G. V., Szymanski, J. A., Alger, K. E., & Grant, E. H. C. (2020). Principles and mechanisms of wildlife population persistence in the face of disease. Frontiers in Ecology and Evolution, 8, 569016. https://doi.org/10.3389/fevo.2020.569016

Shearer, B. L., Crane, C. E., Barrett, S., & Cochrane, A. (2007). Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia. Australian Journal of Botany, 55(3), 225-238. https://doi.org/10.1071/BT06111

Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., et al. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4(2), 125-134. https://doi.org/10.1007/s10393-007-0093-5

Smith, K. E., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349-1357. https://doi.org/10.1111/j.1523-1739.2006.00524.x

Stenlid, J., & Oliva, J. (2016). Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20150455. https://doi.org/10.1098/rstb.2015.0455

Stewart Merrill, T. E., & Johnson, P. T. J. (2020). Towards a mechanistic understanding of competence: A missing link in diversity-disease research. Parasitology, 147(11), 1159-1170. https://doi.org/10.1017/S0031182020000943

Welsh, M. E., Cronin, J. P., & Mitchell, C. E. (2020). Trait-based variation in host contribution to pathogen transmission across species and resource supplies. Ecology, 101(1), e03164. https://doi.org/10.1002/ecy.3164

Published

2024-08-09

How to Cite

Barbarú-Grajales, A., Suárez-Cedillo, S. E., Vargas-Tierras, T. J., & Acosta-Pérez, K. I. (2024). DISEASE MONITORING IN WILD PLANTS AND ANIMALS: AN ESSENTIAL EDUCATIONAL TOOL IN ECUADORIAN ENVIRONMENTAL MANAGEMENT. Revista Órbita Pedagógica, 11(2), 168–180. Retrieved from http://revista.isced-hbo.co.ao/ojs/index.php/rop/article/view/238