MONITORAMENTO DE DOENÇAS EM PLANTAS E ANIMAIS SILVESTRES: UMA FERRAMENTA EDUCACIONAL ESSENCIAL NA GESTÃO AMBIENTAL EQUATORIANA
Palavras-chave:
educação; monitoramento; doenças; ecossistema; Amazônia.Resumo
O monitoramento de doenças em plantas e animais selvagens não é apenas crucial para medir o sucesso das políticas e gestão ambiental no Equador, mas também é apresentado como uma ferramenta educacional inestimável. A sua implementação eficaz permite não só prevenir a propagação de doenças e proteger a biodiversidade, mas também serve de base educativa para sensibilizar e formar futuras gerações de cientistas e cidadãos comprometidos com a sustentabilidade. O estudo tem como objetivo sintetizar as causas do aparecimento de doenças em plantas e animais silvestres e avaliar o impacto das mudanças climáticas nos ecossistemas, com o objetivo de desenvolver programas educacionais e de pesquisa na região amazônica do Equador. Como parte da metodologia, foram selecionadas fontes de informação confiáveis e relevantes a partir de bases de dados especializadas, o que permitiu não só identificar estudos relevantes, mas também colocar desafios educacionais específicos em torno do monitoramento de doenças. O Equador, sendo um país megadiverso, oferece um cenário perfeito para estudantes e académicos participarem ativamente na vigilância epidemiológica, recolha de amostras e testes laboratoriais, enriquecendo assim a sua formação académica e prática. Conclui-se que, para um monitoramento bem-sucedido, é necessário não apenas desenvolver programas específicos que coletem dados sistematicamente, mas também desenhar estratégias educacionais que motivem e capacitem os participantes, fortalecendo sua compreensão sobre a importância da saúde dos ecossistemas e sua conservação.
Referências
Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19(10), 535–544. https://doi.org/10.1016/j.tree.2004.07.021
Bebber, D. P., Holmes, T., & Gurr, S. J. (2014). The global spread of crop pests and pathogens. Global Ecology and Biogeography, 23(12), 1398–1407. https://doi.org/10.1111/geb.12214
Becker, D. J., & Han, B. A. (2021). The macroecology and evolution of avian competence for Borrelia burgdorferi. Global Ecology and Biogeography, 30(4), 710–724. https://doi.org/10.1111/geb.13256
Bonnamour, A., Gippet, J. M. W., & Bertelsmeier, C. (2021). Insect and plant invasions follow two waves of globalisation. Ecology Letters. https://doi.org/10.1111/ele.13863
Brasier, C. M., & Buck, K. W. (2001). Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biological Invasions, 3(3), 223–233. https://doi.org/10.1023/A:1015208714078
Brum, M., & Lisboa, S. (2023). Mapping of no-drill areas in Ecuador’s Amazon can be scaled for entire rainforest: Study. Mongabay. https://news.mongabay.com/2023/02/mapping-of-no-drill-areas-in-ecuadors-amazon-can-be-scaled-for-entire-rainforest-study/ (Online on 13 February 2023).
Burdon, J. J., & Laine, A.-L. (2019). Evolutionary dynamics of plant–pathogen interactions. Cambridge University Press.
Burdon, J. J., & Thrall, P. H. (2009). Coevolution of plants and their pathogens in natural habitats. Science, 324(5930), 755–756. https://doi.org/10.1126/science.1171663
Burgess, T. I., & Wingfield, M. J. (2002). Impact of fungi in natural forest ecosystems; a focus on Eucalyptus. In K. Sivasithamparam, K. W. Dixon, & R. L. Barrett (Eds.), Microorganisms in plant conservation and biodiversity (pp. 285–306). Kluwer Academic Publishers.
Burgess, T. I., & Wingfield, M. J. (2017). Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience, 67(1), 14–25. https://doi.org/10.1093/biosci/biw132
Canessa, S., Bozzuto, C., Grant, E. H. C., Cruickshank, S. S., Fisher, M. C., Koella, J. C., et al. (2018). Decision-making for mitigating wildlife diseases: from theory to practice for an emerging fungal pathogen of amphibians. Journal of Applied Ecology, 55(4), 1987–1996. https://doi.org/10.1111/1365-2664.13089
Chaloner, T. M., Gurr, S. J., & Bebber, D. P. (2020). Geometry and evolution of the ecological niche in plant-associated microbes. Nature Communications, 11, Article 2955. https://doi.org/10.1038/s41467-020-16719-w
De Castro, F., & Bolker, B. (2005). Mechanisms of disease-induced extinction. Ecology Letters, 8(1), 117–126. https://doi.org/10.1111/j.1461-0248.2004.00693.x
De la Torre, A., Paredes-Jarrín, J., López-Villavicencio, M., & Benítez-Malvido, J. (2021). Changes in seedling survival and disease incidence in an Andean Forest under climate change scenarios. Biotropica, 53(2), 382–391. https://doi.org/10.1111/btp.12869
Desprez-Loustau, M.-L., Aguayo, J., Dutech, C., Hayden, K. J., Husson, C., Jakushkin, B., et al. (2016). An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Annals of Forest Science, 73(1), 45–67. https://doi.org/10.1007/s13595-015-0487-7
Desprez-Loustau, M.-L., Marcais, B., Nageleisen, L. M., Piou, D., & Vannini, A. (2006). Interactive effects of drought and pathogens in forest trees. Annals of Forest Science, 63(6), 597–612. https://doi.org/10.1051/forest:2006040
Díaz, S., Settele, J., Brondízio, E. S., Ngo, H. T., Agard, J., Arneth, A., et al. (2019). Pervasive human-driven decline of life on Earth points to the need for transformative change. Science, 366(6471), Article eaax3100. https://doi.org/10.1126/science.aax3100
GADP Orellana. (2015). Plan de desarrollo y ordenamiento territorial de la Provincia de Orellana 2015-2025. Recuperado el 11 de julio de 2017, de http://www.gporellana.gob.ec/plande-desarrollo/
Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Review of Phytopathology, 44(1), 489–509. https://doi.org/10.1146/annurev.phyto.44.070505.143420
Ghelardini, L., Pepori, A. L., Luchi, N., Capretti, P., & Santini, A. (2016). Drivers of emerging fungal diseases of forest trees. Forest Ecology and Management, 381, 235–246. https://doi.org/10.1016/j.foreco.2016.09.032
Halliday, F. W. (2021). Calanda19 (Version swh:1:rev:86ce01777c396840455fd67a3ff5cd8420e8df21) [Computer software]. Software Heritage. https://archive.softwareheritage.org/swh:1:rev:86ce01777c396840455fd67a3ff5cd8420e8df21
Halliday, F. W., Heckman, R. W., Wilfahrt, P. A., & Mitchell, C. E. (2019). Past is prologue: Host community assembly and the risk of infectious disease over time. Ecology Letters, 22(2), 138-148. https://doi.org/10.1111/ele.13176
Halliday, F. W., Heckman, R. W., Wilfahrt, P. A., & Mitchell, C. E. (2020a). Eutrophication, biodiversity loss, and species invasions modify the relationship between host and parasite richness during host community assembly. Global Change Biology, 26(9), 4854-4867. https://doi.org/10.1111/gcb.15165
Halliday, F. W., Rohr, J. R., & Laine, A. L. (2020b). Biodiversity loss underlies the dilution effect of biodiversity. Ecology Letters, 23(11), 1611-1622. https://doi.org/10.1111/ele.13590
Halliday, F. W., & Rohr, J. R. (2019). Measuring the shape of the biodiversity-disease relationship across systems reveals new findings and key gaps. Nature Communications, 10(1), 5032. https://doi.org/10.1038/s41467-019-13049-w
Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576), 2158-2162. https://doi.org/10.1126/science.1063699
Hefley, T., Hooten, M., Hanks, E., Russell, R. E., & Walsh, D. P. (2017). A dynamic spatio-temporal model for spatial data. Spatial Statistics, 20, 206-220. https://doi.org/10.1016/j.spasta.2017.02.005
Hennon, P. E., Frankel, S. J., Woods, A. J., Worrall, J. J., Norlander, D., Zambino, P. J., et al. (2020). A framework to evaluate climate effects on forest tree diseases. Forest Pathology, 50(2), e12649. https://doi.org/10.1111/efp.12649
Hepting, G. H. (1963). Climate and forest diseases. Annual Review of Phytopathology, 1(1), 31-50.
Hillebrand, H., Blasius, B., Borer, E. T., Chase, J. M., Downing, J. A., Eriksson, B. K., Filstrup, C. T., Harpole, W. S., Hodapp, D., Larsen, S., Lewandowska, A. M., Seabloom, E. W., Van de Waal, D. B., & Ryabov, A. B. (2018). Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology, 55(1), 169-184. https://doi.org/10.1111/1365-2664.12959
Holdenrieder, O., Pautasso, M., Weiberg, P. J., & Lonsdale, D. (2004). Tree diseases and landscape processes: The challenge of landscape pathology. Trends in Ecology & Evolution, 19(8), 446-452. https://doi.org/10.1016/j.tree.2004.06.003
Jeger, M. J. (2022). The impact of climate change on disease in wild plant populations and communities. Plant Pathology, 71(1), 111-130. https://doi.org/10.1111/ppa.13387
Johnson, P. T. J., Ostfeld, R. S., & Keesing, F. (2015). Frontiers in research on biodiversity and disease. Ecology Letters, 18(10), 1119-1133. https://doi.org/10.1111/ele.12479
Johnson, P. T. J., Preston, D. L., Hoverman, J. T., & Richgels, K. L. D. (2013). Biodiversity decreases disease through predictable changes in host community competence. Nature, 494(7437), 230-233. https://doi.org/10.1038/nature11883
Joseph, M. B., Mihaljevic, J. R., Orlofske, S. A., & Paull, S. H. (2013). Does life history mediate changing disease risk when communities disassemble? Ecology Letters, 16(11), 1405-1412. https://doi.org/10.1111/ele.12180
Kirk, D., Shea, D., & Start, D. (2019). Host traits and competitive ability jointly structure disease dynamics and community assembly. Journal of Animal Ecology, 88(9), 1379-1391. https://doi.org/10.1111/1365-2656.13028
Martin, L. B., Addison, B. A., & Bean, A. G. D. (2019). Extreme competence: Keystone hosts of infections. Trends in Ecology & Evolution, 34(4), 303-314. https://doi.org/10.1016/j.tree.2018.12.009
Mihaljevic, J. R., Joseph, M. B., Orlofske, S. A., Paull, S. H., & Killilea, M. (2014). The scaling of host density with richness affects the direction, shape, and detectability of diversity-disease relationships. PLOS ONE, 9(5), e97812. https://doi.org/10.1371/journal.pone.0097812
Paap, T., Wingfield, M. J., Burgess, T. I., Wilson, J. R. U., & Richardson, D. M., & Santini, A. (2022). Invasion frameworks: A forest pathogen perspective. Current Forestry Reports, 8(1), 74-89. https://doi.org/10.1007/s40725-021-00144-z
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva, Switzerland: IPCC.
Parker, I. M., & Gilbert, G. S. (2018). Density-dependent disease, life-history trade-offs, and the effect of leaf pathogens on a suite of co-occurring close relatives. Journal of Ecology, 106(5), 1829-1838. https://doi.org/10.1111/1365-2745.13024
Pautasso, M., & Jeger, M. J. (2014). Impacts of climate change on plant diseases: New scenarios for the future. In E. R. Choffnes & A. Mack (Eds.), The influence of global environmental change on infectious disease dynamics: Workshop summary (pp. 359-374). Washington, D.C.: National Academies Press.
Pautasso, M., Aas, G., Queloz, V., & Holdenrieder, O. (2013). European ash (Fraxinus excelsior) dieback – A conservation biology challenge. Biological Conservation, 158, 37-49. https://doi.org/10.1016/j.biocon.2012.08.026
Pautasso, M., Dehnen-Schmutz, K., Holdenrieder, O., Pietravalle, S., Salama, N., Jeger, M. J., et al. (2010). Plant health and global change – Some implications for landscape management. Biological Reviews, 85(4), 729-755. https://doi.org/10.1111/j.1469-185X.2010.00123.x
Plowright, R. K., Sokolow, S. H., Gorman, M. E., Daszak, P., & Foley, J. E. (2008). Causal inference in disease ecology: Investigating ecological drivers of disease emergence. Frontiers in Ecology and the Environment, 6(8), 420-429. https://doi.org/10.1890/070086
Ramsfield, T. D., Bentz, B. J., Faccoli, M., Jactel, H., & Brockerhoff, E. G. (2016). Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry, 89(3), 245-252. https://doi.org/10.1093/forestry/cpw018
Rigling, D., & Prospero, S. (2018). Cryphonectria parasitica, the causal agent of chestnut blight: Invasion history, population biology and disease control. Molecular Plant Pathology, 19(1), 7-20. https://doi.org/10.1111/mpp.12542
Rizzo, D. M., & Garbelotto, M. (2003). Sudden oak death: Endangering California and Oregon forest ecosystems. Frontiers in Ecology and the Environment, 1(5), 197-204. https://doi.org/10.1890/1540-9295(2003)001[0197:SODECA]2.0.CO;2
Rohr, J. R., Dobson, A. P., Johnson, P. T. J., Kilpatrick, A. M., Paull, S. H., Raffel, T. R., Ruiz-Moreno, D., & Thomas, M. B. (2011). Frontiers in climate change-disease research. Trends in Ecology & Evolution, 26(6), 270-277. https://doi.org/10.1016/j.tree.2011.03.002
Russell, R. E., DiRenzo, G. V., Szymanski, J. A., Alger, K. E., & Grant, E. H. C. (2020). Principles and mechanisms of wildlife population persistence in the face of disease. Frontiers in Ecology and Evolution, 8, 569016. https://doi.org/10.3389/fevo.2020.569016
Shearer, B. L., Crane, C. E., Barrett, S., & Cochrane, A. (2007). Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia. Australian Journal of Botany, 55(3), 225-238. https://doi.org/10.1071/BT06111
Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, A. D., et al. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4(2), 125-134. https://doi.org/10.1007/s10393-007-0093-5
Smith, K. E., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349-1357. https://doi.org/10.1111/j.1523-1739.2006.00524.x
Stenlid, J., & Oliva, J. (2016). Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1709), 20150455. https://doi.org/10.1098/rstb.2015.0455
Stewart Merrill, T. E., & Johnson, P. T. J. (2020). Towards a mechanistic understanding of competence: A missing link in diversity-disease research. Parasitology, 147(11), 1159-1170. https://doi.org/10.1017/S0031182020000943
Welsh, M. E., Cronin, J. P., & Mitchell, C. E. (2020). Trait-based variation in host contribution to pathogen transmission across species and resource supplies. Ecology, 101(1), e03164. https://doi.org/10.1002/ecy.3164
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Asterio Barbarú-Grajales, Sandra Elizabeth Suárez-Cedillo, Tannia Jazmín Vargas-Tierras, Karel Ismar Acosta-Pérez
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0.